A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier–Stokes Equations

نویسندگان

  • Ann S. Almgren
  • John B. Bell
  • Phillip Colella
  • Louis H. Howell
  • Michael L. Welcome
چکیده

In this paper we present a method for solving the equations governing timedependent, variable density incompressible flow in two or three dimensions on an adaptive hierarchy of grids. The method is based on a projection formulation in which we first solve advection–diffusion equations to predict intermediate velocities, and then project these velocities onto a space of approximately divergence-free vector fields. Our treatment of the first step uses a specialized second-order upwind method for differencing the nonlinear convection terms that provides a robust treatment of these terms suitable for inviscid and high Reynolds number flow. Density and other scalars are advected in such a way as to maintain conservation, if appropriate, and free-stream preservation. Our approach to adaptive refinement uses a nested hierarchy of logically-rectangular girds with simultaneous refinement of the girds in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithms’s accuracy and convergence properties, and illustrate the behavior of the method. An additional example demonstrates the performance of the method on a more realistic problem, namely, a three-dimensional variable density shear layer. c © 1998 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows

In this article, we propose to study two issues associated with the use of the incremental projection method for solving the incompressible Navier-Stokes equation. The first one is the combination of this time splitting algorithm with an adaptive local refinement method. The second one is the reduction of spurious velocities due to the right-hand side of the momentum balance. We propose a new v...

متن کامل

A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system

A consistent, conservative and accurate scheme has been designed to calculate the current density and the Lorentz force by solving the electrical potential equation for magnetohydrodynamics (MHD) at low magnetic Reynolds numbers and high Hartmann numbers on a finite-volume structured collocated grid. In this collocated grid, velocity (u), pressure (p), and electrical potential (u) are located i...

متن کامل

A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids

We present an unconditionally stable second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive Cartesian grids. We employ quadtree and octree data structures as an efficient means to represent the grid. We use the supra-convergent Poisson solver of [C.-H. Min, F. Gibou, H. Ceniceros, A supra-convergent finite difference scheme for the variable...

متن کامل

A Characteristics-Mix Stabilized Finite Element Method for Variable Density Incompressible Navier-Stokes Equations

This paper describes a characteristics-mix finite element method for the computation of incompressible Navier-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed me...

متن کامل

Numerical solution of the time-dependent Navier-Stokes equation for variable density–variable viscosity. Part I

We consider methods for the numerical simulations of variable density incompressible fluids, modelled by the Navier-Stokes equations. Variable density problems arise, for instance, in interfaces between fluids of different densities in multiphase flows such as appearing in porous media problems. We show that by solving the Navier-Stokes equation for the momentum variable instead of the velocity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996